The FUTURE OF PARKING with Sound Transit

PIPTA Conference and Expo | Oct. 19 2022

Matt Davis

Principal, Watry Design, Inc. mdavis@watrydesign.com

Sounder South Parking & Access Improvement Project

Puyallup Station Garage

- 503 parking stalls
- o 5 levels
- o 176,402 square feet
- Anticipated completion end of 2022

Sumner Station Parking Garage

- New parking structure adding up to 500 spaces
- Sidewalk & lighting improvements
- Anticipating completion in 2025

Auburn Station Parking Garage

New parking structure
Pedestrian and bicycle improvements
Anticipating completion in 2026

Kent Station Parking Garage

- New parking structure
- Improved pedestrian connections
- Bus layover space for King County Metro
- Anticipating completion in 2026

Opportunities and Challenges of **Building Flexibility** into Sound Transit **Parking Facilities** for Future **Adoptive Use**

........

Future of Parking Study Goals

 Envision a project site that can serve the parking needs of today and be able to be easily converted to an alternate use in the future when parking demand has subsided

- Understand the needs of the project for future conversion
- Evaluate and report on the pros and cons and flexibility of some of the findings

TRADITIONAL PARKING STRUCTURE

Engineering Consideration: Structural Loading

Gravity Loads (Different Use is 2-6 times as much load)

CONSIDER ADAPTIVE REUSE

2 Ch

0

Retail floor-to-floor height

1

21

*

Retail floor-to-floor height

Structural system (loading, vibration, column grid & drainage

Retail floor-to-floor height

Structural system (loading, vibration, column grid & drainage

Exterior speed ramp

Footprint size & depth of future use

Retail floor-to-floor height

Structural system (loading, vibration, column grid & drainage

Exterior speed ramp

Footprint size & depth of future use Location of cores & pedestrian pathways

Retail floor-to-floor height

Structural system (loading, vibration, column grid & drainage

Exterior speed ramp

Footprint size & depth of future use Location of cores & pedestrian pathways Egress. Current & future occupant load

Final Condition: Vehicle Storage Off-site

 11 11

Partial Adaptive Reuse Driven by Economics

2

PARKING TO FUTURE OFFICE

OPTION 1

Ground Level Plan Remains in Both Phases

- Retail at ground level
- Location of vertical core circulation (office or residential)
- Seismic design solution (for MF or SW system)

Typical Parking Plan to Future Office

 Removable interior Ramp system and conversion to central courtyard (or vehicle lift system)

 Short span system to maximize space layout or additional MEP pipe penetrations

Top Level Parking Plan to Future Office

• Open top level to penthouse office with exterior balconies

Typical Level Parking Plan to Future Residential

• Vertical circulation location should be considered for each use

Top Level Parking Plan to Future Office

 Exterior Façade cladding (from Vehicle Barrier to wall or curtain wall system)

Alternate Solutions

 Car Mechanical Lift in lieu of express ramp
 Valet lobby

Building Section from Parking to Office

Added floor to floor height (13 foot)Ramp removal converted to courtyard

Garage with Ground Level Retail

Garage Cut-Away View

Office Cut-Away View

PARKING TO FUTURE RESIDENTIAL

OPTION 2

Residential With Ground Level Retail

Residential courtyard cut-away view

Residential Courtyard

Residential

Cost

- Designing the ground level for future conversion can offer minimal cost impacts while still providing flexibility.
- Designing flexibility into upper levels requires greater upfront investment.
- Fully designing an entire structure for adaptive reuse can increase cost by 40% or more.

Adaptive Re-Use Summary

- Upfront cost premium to provide flexibility for future conversion – invest for the long term
- Ground floor occupancy has least cost impact
- Increased floor-to-floor heights based on future occupancy
- Design structural system for future occupancy
- Consider daylighting and egress requirements
- Adaptive re-use is the most sustainable and cost-effective redevelopment option

INSPIRED, Have Questions, OR WANT TO KNOW MORE?

